STripFET ${ }^{\text {TM }}$ III POWER MOSFET

TARGET DATA

TYPE	V $_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$	$\mathbf{I}_{\mathbf{D}}$
STB75NH02L	24 V	$<0.008 \Omega$	75 A

- TYPICAL R ${ }_{\text {DS }}($ on $)=0.0062 \Omega$ @ 10 V
- TYPICAL R $R_{D S}(o n)=0.008 \Omega$ @ 5 V
- R ${ }_{\text {DS(ON }}{ }^{*} Q_{g}$ INDUSTRY's BENCHMARK
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- LOW THRESHOLD DEVICE
- SURFACE-MOUNTING D²PAK (TO-263) POWER PACKAGE IN TUBE (NO SUFFIX) OR IN TAPE \& REEL (SUFFIX "T4")

DESCRIPTION

The STB75NH02L utilizes the latest advanced design rules of ST's proprietary STripFETTM technology. This is suitable for the most demanding DC-DC converter application where high efficiency is to be achieved.

APPLICATIONS

- SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY DC/DC CONVERTERS

INTERNAL SCHEMATIC DIAGRAM

,

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {spike }}(1)$	Drain-source Voltage Rating	30	V
$\mathrm{~V}_{\mathrm{DS}}$	Drain-source Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	24	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain-gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega\right)$	24	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate- source Voltage	± 20	V
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	75	A
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	53	A
$\mathrm{I}_{\mathrm{DM}}(5)$	Drain Current (pulsed)	300	A
$\mathrm{P}_{\text {TOT }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	85	W
	Derating Factor	1	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{E}_{\text {AS }}(2)$	Single Pulse Avalanche Energy	TBD	mJ
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-55 to 175	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature		

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{1}	Maximum Lead Temperature for Soldering Purpose	300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED) ON/OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {(BR) }} \mathrm{DSS}$	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	24			V
IdSs	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & V_{D S}=20 \mathrm{~V}, T_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IGSS	Gate-body Leakage Current ($\mathrm{V}_{\mathrm{DS}}=0$)	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1			V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-source On Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A} \end{aligned}$		$\begin{gathered} 0.0062 \\ 0.008 \end{gathered}$	$\begin{aligned} & 0.008 \\ & 0.014 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

ELECTRICAL CHARACTERISTICS (CONTINUED)
DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{g}_{\mathrm{fs}}(3)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}=30 \mathrm{~A}$		TBD		S
$\mathrm{C}_{\mathrm{iss}}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$		2000		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			420		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		210	pF		
R_{g}	Gate Input Resistance	$\mathrm{f}=1 \mathrm{MHz}$ Gate DC Bias $=0$ 	Test Signal Level $=20 \mathrm{mV}$ Open Drain		1	

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{On})}$ tr_{r}	Turn-on Delay Time Rise Time	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=37.5 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V} \mathrm{GS}=10 \mathrm{~V} \\ & \text { (see test circuit, Figure 3) } \end{aligned}$		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\begin{aligned} & \mathrm{V} \mathrm{VD}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 35 \\ \text { TBD } \\ \text { TBD } \end{gathered}$	47	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$
Qoss (4)	Output Charge	$\mathrm{V}_{\mathrm{DS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		TBD		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d} \text { (off) }}$ t_{f}	Turn-off-Delay Time Fall Time	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{ID}=37.5 \mathrm{~A}$, $\mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (see test circuit, Figure 3)		TBD TBD		ns
ns						

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ISD	Source-drain Current				75	A
ISDM (1)	Source-drain Current (pulsed)				300	A
$\mathrm{V}_{\text {SD }}$ (3)	Forward On Voltage	$\mathrm{I}_{\mathrm{SD}}=37.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			1.3	V
$\begin{gathered} \hline \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & V_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see test circuit, Figure 5) } \end{aligned}$		$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{gathered} \hline \mathrm{ns} \\ \mathrm{nC} \\ \mathrm{~A} \end{gathered}$

1. Garanted when external $R_{g}=4.7 \Omega$ and $t_{f}<t_{f} \max$
2. Starting $T_{j}=25^{\circ} \mathrm{C}, I_{D}=25 \mathrm{~A}, V_{D D}=15 \mathrm{~V}$
3. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
4. $Q_{\text {oss }}=C_{o s s}{ }^{*} \Delta V_{i n}, C_{\text {oss }}=C_{g d}+C_{d s}$. See Appendix A
5. Pulse width limited by safe operating area

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For
Resistive Load

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

D²PAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
B	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
C	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		15.85	0.590		0.208
L	15		1.4	0.050		0.625
L2	1.27		1.75	0.055		0.055
L3	1.4		3.2	0.094		0.126
M	2.4			8		
R						
V2	00					

D²PAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

TAPE MECHANICAL DATA

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A0	10.5	10.7	0.413	0.421
B0	15.7	15.9	0.618	0.626
D	1.5	1.6	0.059	0.063
D1	1.59	1.61	0.062	0.063
E	1.65	1.85	0.065	0.073
F	11.4	11.6	0.449	0.456
K0	4.8	5.0	0.189	0.197
P0	3.9	4.1	0.153	0.161
P1	11.9	12.1	0.468	0.476
P2	1.9	2.1	0.075	0.082
R	50		1.574	
T	0.25	0.35	0.0098	0.0137
W	23.7	24.3	0.933	0.956

[^0]
Appendix A: Buck Converter Power Losses Estimation

DESCRIPTION

The power losses associated with the FETs in a Synchronous Buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

The low side (SW2) device requires:

- Very low RDS(on) to reduce conduction losses
- Small $Q_{\text {gls }}$ to reduce the gate charge losses
- Small Coss to reduce losses due to output capaci tance
- Small $Q_{r r}$ to reduce losses on SW1 during its turn-on
- The $\mathrm{C}_{\mathrm{gd}} / \mathrm{C}_{\mathrm{gs}}$ ratio lower than $\mathrm{V}_{\mathrm{th}} / \mathrm{V}_{\mathrm{GG}}$ ratio especially with low drain to source voltage to avoid the cross conduction phenomenon

The high side (SW1) device requires:

- Small R_{g} and L_{s} to allow higher gate current peak and to limit the voltage feedback on the gate
- Small Q_{g} to have a faster commutation and to reduce gate charge losses
- Low $\mathrm{R}_{\mathrm{DS}(\text { on) }}$ to reduce the conduction losses

Parameter	Meaning
δ	Duty-Cycle
$\mathrm{Q}_{\mathrm{gsth}}$	Post Threshold Gate Charge
$\mathrm{Q}_{\mathrm{gls}}$	Third Quadrant Gate Charge
Pconduction	On State Losses
Pswitching	On-off Transition Losses
Pdiode	Conduction and Reverse Recovery Diode Losses
Pdiode	Gate Drive Losses
P $_{\text {Qoss }}$	Output Capacitance Losses

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

[^0]: * on sales type

